

International Journal of Theoretical & Applied Sciences, Special Issue-NCRTAST 8(1): 66-68(2016)

ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247

"Reflexivity and the dual E [°] of locally Convex Spaces"

G. C. Dubey^{*}, S.S. Rajput^{*} and Atarsingh Meena^{**}

^{*}Department of Mathematics, Govt. M.G.M. Post-graduate college, Itarsi, (Madhya Pradesh), INDIA ^{**}Research scholar, Govt. M.G.M. Post-graduate college, Itarsi, (Madhya Pradesh), INDIA

> (Corresponding author: Atarsingh Meena) (Received 11 April, 2016 Accepted 20 May, 2016) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In this paper we consider a locally convex space $E[\tau]$ that holds a type of reflexivity from any of the eight types, namely, polar semi-reflexivity, polar reflexivity, semi-reflexivity, reflexivity, inductive semi-reflexivity, inductive reflexivity, B-semireflexivity, and B-reflexivity. We consider the statements " $E[\tau]$ holds a type of reflexivity imply $E[\ ^{\circ}]$ holds some of the reflexivities. We discuss some results and investigate for the truth value of this statement.

Keywords: Bornological space, barreled, reflexive, polar reflexive, inductively reflexive, B-reflexive, strong dual.

AMS (2010) Mathematics Subject Classification: 46A25.

I. INTRODUCTION

Throughout the paper, E[] denotes a locally convex topological vector space, which is Huasdorff and abbreviated as locally convex space. The strong dual of $E[\tau]$ is $E[_{b}(E)]$ and the bidual of $E[\tau]$ is E $(E'[\tau_b(E)])$. If E = E, then $E[\tau]$ is called semi-reflexive. A semi-reflexive locally convex space $E[\tau]$ is called reflexive provided $=_{b}(E)$. The space $E'[\tau^{o}]$ denotes the dual E equipped with the topology ^o of uniform convergence on the class of precompact sets in E. Let ^{oo} be the topology on (E[^o]) of uniform convergence on °-precompact subsets of E. If (E [°]) = E, then E[] is called polar semi-reflexive, and polar reflexive if further = ^{oo}. These reflexivities have been discussed in [4] as p-completeness and p-reflexivity, respectively. We also note that polar reflexivity is the t-reflexivity of [10]. Characterizations of polar semi-reflexivity and polar reflexivity are discussed in [3, 4, 7, 8, 9, 12]. The finest locally convex topology on E for which all equicontinuous subsets are bounded is denoted by *. called inductive topology. The base of neighborhoods of 0 in E[*] is formed by the absolutely convex subsets of E that absorbs all -equicontinuous subsets of E. If (E [*]) coincides with E, then E[] is called inductively semi-reflexive. Moreover, if = ** i.e. (*)*, then E[] is called inductively reflexive [2]. Inductive (semi) reflexivity is also discussed in [1, 5, 11, 13]. Let r be the topology, called reflective topology, on E of uniform convergence over the class R of all the absolutely convex bounded subset B of the dual E whose span space E_B is a reflexive Banach space with B as unit ball. A locally convex space E[] is said to be B-semireflexive if it is barreled and $E = \tilde{E}[$ [r] (completion of E[r]). If further, = r, then E[] is called B-reflexive [13].

We recall some well known results on interrelationship: 1. Every (semi) reflexive locally convex space is polar (semi) reflexive.

2. Every inductively (semi) reflexive locally convex space is (semi) reflexive.

3. B-semireflexive locally convex space is complete and reflexive. On the other hand, a reflexive locally convex space is B-semireflexive if and only if it is bornological.

4. B-semireflexive locally convex space is inductively semi-reflexive.

II. RESULTS

First we discuss the following result of [11]; its proof is given for completeness:

2.1 Theorem : Inductively reflexive locally convex space is B-semireflexive.

Proof: Let $E[\tau]$ be inductively reflexive. From (E'[*]) = E we have * $_{k}(E)$. We always have $_{k}(E)$ $\leq \tau_{\rm b}(E)$ *. Therefore $_{k}(E) = _{b}(E) = *$ on E. Now $\tau = **$ implies that is the bornological topology for the $_{s}(E)$ -bounded sets in E and therefore is the inductive limit topology on E for the class of E_B formed by the class of all absolutely convex $_{s}(E)$ bounded and $_{s}(E)$ -closed sets B in E. But $(E[_{b}(E)])$ = (E[*]) = E, that is, $E[\tau]$ is semi-reflexive and so weakly quasi-complete. Therefore, each of the above E_{B} is a Banach space. Thus E[] is the inductive limit of the class of E_B of Banach spaces. So E[] is bornological and so E[] is quasi-barreled, and so it is reflexive. Again, since $_{b}(E) = *$, the strong dual $E[_{b}(E)] = E[*]$ is bornological. Now $E[\tau]$ is reflexive and the strong dual E [$_{b}(E)$] is bornological, so E[τ] is B-semireflexive.

Now we investigate a result as under:

2.2 Theorem: If a locally convex space E[] is polar reflexive, then E[^o] is polar reflexive.

Proof: If E[] is polar reflexive, then $(E[^{\circ}]) = E$ and $=^{\circ\circ}$. Consider E[$^{\circ}$], its dual is E and on E the topology ($^{\circ}$) $^{\circ}$ is and dual of E[] is E. It means E[$^{\circ}$] is polar semi-reflexive. Further, ($^{\circ}$) $^{\circ\circ} = ({}^{\circ\circ})^{\circ} = {}^{\circ}$.

Hence $E[^{\circ}]$ is polar reflexive. From this theorem we obtain that if E[] is polar reflexive (and so if it is any of: reflexive, B-semireflexive, B-reflexive, inductively reflexive), then $E[^{\circ}]$ is polar reflexive (and so polar semi-reflexive). We also have:

2.3 Theorem: If a locally convex space E[] is reflexive, then $E[]^{\circ}$ is semi-reflexive.

Proof: E[] is reflexive, then E [$_{b}(E)$] is also reflexive. We know that $_{s}(E) \circ _{b}(E)$. But reflexivity of E[] implies that $_{b}(E) = _{k}(E)$, so $_{s}(E) \circ _{k}(E) = _{b}(E)$.Since E[$_{b}(E)$] is semi-reflexive, E[$^{\circ}$] is semi-reflexive.

This theorem implies that if $E[\]$ is reflexive (and so if it is any of: B-semireflexive, B-reflexive, inductively reflexive), then $E[\ ^o]$ is semi-reflexive (and so polar semi-reflexive).

Example-A: Consider the locally convex space E[] = ${}^{1}[_{k}(c_{0})]$. This space is inductively semi-reflexive (see[]). Its dual is $E = c_{0}$. Therefore, $E[{}^{\circ}] = c_{0}[(_{k}(c_{0}))^{\circ}]$. Now on c_{0} , ${}_{s}({}^{1}) (_{k}(c_{0}))^{\circ} {}_{b}({}^{1}) = {}_{k}({}^{1})$. It means $(_{k}(c_{0}))^{\circ}$ is compatible for the dual pair $(c_{0}, {}^{1})$, and so $(c_{0}[(_{k}(c_{0}))^{\circ}]) = {}^{1}$. Therefore, $c_{0}[(_{k}(c_{0}))^{\circ}]$ is not semi-reflexive.

Thus we have an example that $E[] = {}^{1}[_{k}(c_{0})]$ is inductively semi-reflexive(and so also semi-reflexive, polar semi-reflexive) and its dual $E[{}^{0}] = c_{0}[(_{k}(c_{0}))^{0}]$ is not semi-reflexive (and none of: reflexive, inductively semi-reflexive, inductively reflexive, Bsemi-reflexive).

Example-B: The Banach space p, 1 , equipped with the norm topology <math>p is inductively reflexive as well as B-reflexive.([5]).

Its dual is ^q, where 1/p + 1/q = 1. In the locally convex space ^p [_p], every precompact set is relatively compact but unit ball is not relatively compact and so not precompact. Therefore, the dual ^q[(_p)^o] is not barreled and so not reflexive.

In this example we have a locally convex space $E[] = {}^{p} [{}_{p}]$ which is inductively reflexive and B-reflexive (and so also inductively semi-reflexive, B-semireflexive, reflexive, semi-reflexive, polar reflexive, polar semi-reflexive), that is, it holds all the eight types of reflexivity, but the dual $E[{}^{o}] = {}^{q}[({}_{p})^{o}]$ is not reflexive (and so none of: inductively reflexive, B-semireflexive, B-reflexive).

Example-C: We consider E[] = ${}^{1}[({}_{s}(c_{0}))^{oo}]$ and E[o] = $c_{0}[(({}_{s}(c_{0}))^{oo})^{o}]$

We note that ${}^{1}[_{s}(c_{0})]$ is polar semi-reflexive ([5], Theorem 2.8). So it is polar semi-reflexive.

We also note that in the dual c_0 , $({}_{s}(c_0))^{\circ} = {}_{b}({}^{1})$, the usual normed topology (barreled topology), and so $(({}_{s}(c_0))^{\circ\circ})^{\circ} = ({}_{s}(c_0))^{\circ} = {}_{b}({}^{1})$.

Now we consider the locally convex space $E[] = {}^{1}[({}_{s}(c_{0}))^{oo}]$. We have $E[{}^{o}] = {}^{o}c_{0}[(({}_{s}(c_{0}))^{oo})^{o}] = {}^{o}c_{0}[{}_{b}({}^{1})]$, the Banach space c_{0} which is not semi-reflexive. However $(E[{}^{o}]) = (c_{0}[(({}^{s}(c_{0}))^{oo})^{o}]) = {}^{o}(c_{0}[{}_{b}({}^{1})]) = {}^{1}=E$, so E[] is polar semi-reflexive.

Thus we have an example that E[] is polar semireflexive but $E[^{\circ}]$ is not semi-reflexive (and so none of: reflexive, inductively semi-reflexive, inductively reflexive, B-semireflexive, B-reflexive).

To summarize the results, we use the following notations:

I-polar semi-reflexive, II-polar reflexive, III-semireflexive, IV-reflexive, V-inductively semi-reflexive, VI- inductively reflexive, VII- B-semireflexive, VIII-Breflexive.

Using the results and illustrations discussed above, findings are given in the following table:

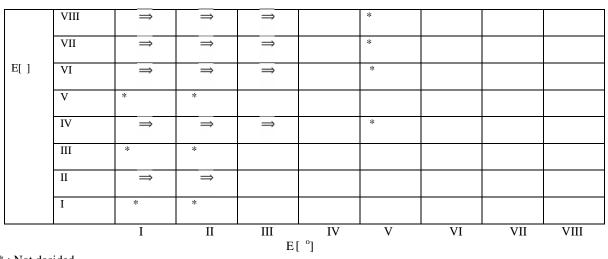


Table 1.

* : Not decided.

REFERRENCES

[1] Steven F. Bellenot: Prevarieties and Intertwined Completeness of Locally Convex Spaces; *Math. Ann.* **217**, (1975), 59-67.

[2] I. A. Berezanskii: Inductively Reflexive, Locally Convex Spaces; *Sov. Math. Dokl.*, **9**, No.5(1968),1080-1082; *Translation from Dokl. Akad. Nauk SSSR* **182**, no.1 (1968), 20-22.

[3] F. G. Bonales, F. J. Trigos-Arrieta and R. V. Mendoza: A characterization of Pontryagin -van Kampen duality for locally convex spaces, *Topology and its applications*, **121** (2002),75-89.

[4] Kalman Brauner: Duals of Frechet spaces and a Generalization of Banach-Dieudonné Theorem; *Duke Math J.* **40** (1973), 845-855.

[5] G. C. Dubey and Atarsingh Meena: Various reflexivities in sequence spaces; *ISOR journal of Math.*, Vol. **11**, issue 3, Ver. V (2015), 48-50.

[6] G. C. Dubey, S.S. Rajput and Atarsingh Meena: Some results on semi-reflexivity and reflexivity in locally *convex spaces*, Mathematical theory and Modeling, Vol. **6** No.4(2016), 105-109.

[7] S. Hernández and F. J. Trigos-Arreta: Group duality with the topology of precompact convergence, J. *Math. Anal. Appl.* **303** (2005),274-287.

[8] S. Hernández and V. Uspenskij: Pontryagin duality for spaces of continuous functions; *J. Math. Anal. Appl.* **242** (2000), 135-144.

[9] G. Köthe: *Topological Vector Spaces I*; Springer-Verlag Berlin Heidelberg New York, 1983.

[10] Seung-Hyeok Kye: Several Reflexivities in Topological Vector Spaces; *J. Math. Anal. Appl.* **139** (1989), 477-482.

[11] Atarsingh Meena and G. C. Dubey: Various reflexivities in locally convex spaces, *International J. of Pure and Applied Mathematical Sciences*, Vol. 8. no.1 (2015), 31-34.

[12] Atarsingh Meena and G. C. Dubey: Polar reflexivity in locally convex spaces, *Global J. of Pure and Applied Mathematics*, Vol. **11**, No. 6 (2015), 4349-4352.

[13] P. K. Raman: On a Class of Reflexive Spaces Related to Ulam's Conjecture on Measurable Cardinals; *J. Reine Angew. Math.* **245** (1970),188-200.

[14]. H. H. Schaefer: Topological vector spaces, Second Edition, Springer-Verlag New York, 1999.